GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning

نویسندگان

  • Xu Liu
  • William C. Krause
  • Ronald L. Davis
چکیده

In both mammals and insects, neurons involved in learning are strongly modulated by the inhibitory neurotransmitter GABA. The GABAA receptor, resistance to dieldrin (Rdl), is highly expressed in the Drosophila mushroom bodies (MBs), a group of neurons playing essential roles in insect olfactory learning. Flies with increased or decreased expression of Rdl in the MBs were generated. Olfactory associative learning tests showed that Rdl overexpression impaired memory acquisition but not memory stability. This learning defect was due to disrupting the physiological state of the adult MB neurons rather than causing developmental abnormalities. Remarkably, Rdl knockdown enhanced memory acquisition but not memory stability. Functional cellular imaging experiments showed that Rdl overexpression abolished the normal calcium responses of the MBs to odors while Rdl knockdown increased these responses. Together, these data suggest that RDL negatively modulates olfactory associative learning, possibly by gating the input of olfactory information into the MBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GABAA receptor RDL suppresses the conditioned stimulus pathway for olfactory learning.

Assigning a gene's function to specific pathways used for classical conditioning, such as conditioned stimulus (CS) and unconditioned stimulus (US) pathway, is important for understanding the fundamental molecular and cellular mechanisms underlying memory formation. Prior studies have shown that the GABA receptor RDL inhibits aversive olfactory learning via its role in the Drosophila mushroom b...

متن کامل

GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors...

متن کامل

A Genetic Screen for Olfactory Habituation Mutations in Drosophila: Analysis of Novel Foraging Alleles and an Underlying Neural Circuit

Habituation is a form of non-associative learning that enables animals to reduce their reaction to repeated harmless stimuli. When exposed to ethanol vapor, Drosophila show an olfactory-mediated startle response characterized by a transient increase in locomotor activity. Upon repeated exposures, this olfactory startle attenuates with the characteristics of habituation. Here we describe the res...

متن کامل

Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning

Dopaminergic neurons in Drosophila play critical roles in diverse brain functions such as motor control, arousal, learning, and memory. Using genetic and behavioral approaches, it has been firmly established that proper dopamine signaling is required for olfactory classical conditioning (e.g., aversive and appetitive learning). Dopamine mediates its functions through interaction with its recept...

متن کامل

Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing.

gamma-Aminobutyric acid (GABA)-gated chloride channel receptors are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. In an effort to understand the nature and properties of the ionotropic receptors involved in these processes in the honeybee Apis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007